Coverage for watcher/decision_engine/strategy/strategies/workload_balance.py: 80%
154 statements
« prev ^ index » next coverage.py v7.8.2, created at 2025-06-17 12:22 +0000
« prev ^ index » next coverage.py v7.8.2, created at 2025-06-17 12:22 +0000
1# -*- encoding: utf-8 -*-
2# Copyright (c) 2016 Intel Corp
3#
4# Authors: Junjie-Huang <junjie.huang@intel.com>
5#
6# Licensed under the Apache License, Version 2.0 (the "License");
7# you may not use this file except in compliance with the License.
8# You may obtain a copy of the License at
9#
10# http://www.apache.org/licenses/LICENSE-2.0
11#
12# Unless required by applicable law or agreed to in writing, software
13# distributed under the License is distributed on an "AS IS" BASIS,
14# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
15# implied.
16# See the License for the specific language governing permissions and
17# limitations under the License.
18#
20from oslo_log import log
22from watcher._i18n import _
23from watcher.common import exception
24from watcher.decision_engine.model import element
25from watcher.decision_engine.strategy.strategies import base
27LOG = log.getLogger(__name__)
30class WorkloadBalance(base.WorkloadStabilizationBaseStrategy):
31 """[PoC]Workload balance using live migration
33 *Description*
35 It is a migration strategy based on the VM workload of physical
36 servers. It generates solutions to move a workload whenever a server's
37 CPU or RAM utilization % is higher than the specified threshold.
38 The VM to be moved should make the host close to average workload
39 of all compute nodes.
41 *Requirements*
43 * Hardware: compute node should use the same physical CPUs/RAMs
44 * Software: Ceilometer component ceilometer-agent-compute running
45 in each compute node, and Ceilometer API can report such telemetry
46 "instance_cpu_usage" and "instance_ram_usage" successfully.
47 * You must have at least 2 physical compute nodes to run this strategy.
49 *Limitations*
51 - This is a proof of concept that is not meant to be used in production
52 - We cannot forecast how many servers should be migrated. This is the
53 reason why we only plan a single virtual machine migration at a time.
54 So it's better to use this algorithm with `CONTINUOUS` audits.
55 - It assume that live migrations are possible
56 """
58 # The meter to report CPU utilization % of VM in ceilometer
59 # Unit: %, value range is [0 , 100]
61 # The meter to report memory resident of VM in ceilometer
62 # Unit: MB
64 DATASOURCE_METRICS = ['instance_cpu_usage', 'instance_ram_usage']
66 def __init__(self, config, osc=None):
67 """Workload balance using live migration
69 :param config: A mapping containing the configuration of this strategy
70 :type config: :py:class:`~.Struct` instance
71 :param osc: :py:class:`~.OpenStackClients` instance
72 """
73 super(WorkloadBalance, self).__init__(config, osc)
74 # the migration plan will be triggered when the CPU or RAM
75 # utilization % reaches threshold
76 self._meter = None
77 self.instance_migrations_count = 0
79 @classmethod
80 def get_name(cls):
81 return "workload_balance"
83 @classmethod
84 def get_display_name(cls):
85 return _("Workload Balance Migration Strategy")
87 @classmethod
88 def get_translatable_display_name(cls):
89 return "Workload Balance Migration Strategy"
91 @property
92 def granularity(self):
93 return self.input_parameters.get('granularity', 300)
95 @classmethod
96 def get_schema(cls):
97 # Mandatory default setting for each element
98 return {
99 "properties": {
100 "metrics": {
101 "description": "Workload balance based on metrics: "
102 "cpu or ram utilization",
103 "type": "string",
104 "choice": ["instance_cpu_usage", "instance_ram_usage"],
105 "default": "instance_cpu_usage"
106 },
107 "threshold": {
108 "description": "workload threshold for migration",
109 "type": "number",
110 "default": 25.0
111 },
112 "period": {
113 "description": "aggregate time period of ceilometer",
114 "type": "number",
115 "default": 300
116 },
117 "granularity": {
118 "description": "The time between two measures in an "
119 "aggregated timeseries of a metric.",
120 "type": "number",
121 "default": 300
122 },
123 },
124 }
126 def get_available_compute_nodes(self):
127 default_node_scope = [element.ServiceState.ENABLED.value]
128 return {uuid: cn for uuid, cn in
129 self.compute_model.get_all_compute_nodes().items()
130 if cn.state == element.ServiceState.ONLINE.value and
131 cn.status in default_node_scope}
133 def choose_instance_to_migrate(self, hosts, avg_workload, workload_cache):
134 """Pick up an active instance to migrate from provided hosts
136 :param hosts: the array of dict which contains node object
137 :param avg_workload: the average workload value of all nodes
138 :param workload_cache: the map contains instance to workload mapping
139 """
140 for instance_data in hosts:
141 source_node = instance_data['compute_node']
142 source_instances = self.compute_model.get_node_instances(
143 source_node)
144 if source_instances:
145 delta_workload = instance_data['workload'] - avg_workload
146 min_delta = 1000000
147 instance_id = None
148 for instance in source_instances:
149 try:
150 # NOTE: skip exclude instance when migrating
151 if instance.watcher_exclude: 151 ↛ 152line 151 didn't jump to line 152 because the condition on line 151 was never true
152 LOG.debug("Instance is excluded by scope, "
153 "skipped: %s", instance.uuid)
154 continue
155 # select the first active VM to migrate
156 if (instance.state != 156 ↛ 158line 156 didn't jump to line 158 because the condition on line 156 was never true
157 element.InstanceState.ACTIVE.value):
158 LOG.debug("Instance not active, skipped: %s",
159 instance.uuid)
160 continue
161 current_delta = (
162 delta_workload - workload_cache[instance.uuid])
163 if 0 <= current_delta < min_delta:
164 min_delta = current_delta
165 instance_id = instance.uuid
166 except exception.InstanceNotFound:
167 LOG.error("Instance not found; error: %s",
168 instance_id)
169 if instance_id: 169 ↛ 140line 169 didn't jump to line 140 because the condition on line 169 was always true
170 return (source_node,
171 self.compute_model.get_instance_by_uuid(
172 instance_id))
173 else:
174 LOG.info("VM not found from compute_node: %s",
175 source_node.uuid)
177 def filter_destination_hosts(self, hosts, instance_to_migrate,
178 avg_workload, workload_cache):
179 """Only return hosts with sufficient available resources"""
180 required_cores = instance_to_migrate.vcpus
181 required_disk = instance_to_migrate.disk
182 required_mem = instance_to_migrate.memory
184 # filter nodes without enough resource
185 destination_hosts = []
186 src_instance_workload = workload_cache[instance_to_migrate.uuid]
187 for instance_data in hosts:
188 host = instance_data['compute_node']
189 workload = instance_data['workload']
190 # calculate the available resources
191 free_res = self.compute_model.get_node_free_resources(host)
192 if (free_res['vcpu'] >= required_cores and 192 ↛ 187line 192 didn't jump to line 187 because the condition on line 192 was always true
193 free_res['memory'] >= required_mem and
194 free_res['disk'] >= required_disk):
195 if self._meter == 'instance_cpu_usage': 195 ↛ 201line 195 didn't jump to line 201 because the condition on line 195 was always true
196 usage = src_instance_workload + workload
197 usage_percent = usage / host.vcpus * 100
198 limit = self.threshold / 100 * host.vcpus
199 if usage < limit: 199 ↛ 201line 199 didn't jump to line 201 because the condition on line 199 was always true
200 destination_hosts.append(instance_data)
201 if self._meter == 'instance_ram_usage': 201 ↛ 202line 201 didn't jump to line 202 because the condition on line 201 was never true
202 usage = src_instance_workload + workload
203 usage_percent = usage / host.memory * 100
204 limit = self.threshold / 100 * host.memory
205 if usage < limit:
206 destination_hosts.append(instance_data)
207 LOG.debug(f"Host {host.hostname} evaluated as destination "
208 f"for {instance_to_migrate.uuid}. Host usage "
209 f"for {self._meter} metric would be {usage_percent}."
210 f"The threshold is: {self.threshold}. "
211 f"selected: {usage < limit}"
212 )
213 return destination_hosts
215 def group_hosts_by_cpu_or_ram_util(self):
216 """Calculate the workloads of each compute_node
218 try to find out the nodes which have reached threshold
219 and the nodes which are under threshold.
220 and also calculate the average workload value of all nodes.
221 and also generate the instance workload map.
222 """
224 nodes = self.get_available_compute_nodes()
225 cluster_size = len(nodes)
226 overload_hosts = []
227 nonoverload_hosts = []
228 # total workload of cluster
229 cluster_workload = 0.0
230 # use workload_cache to store the workload of VMs for reuse purpose
231 workload_cache = {}
232 for node_id in nodes:
233 node = self.compute_model.get_node_by_uuid(node_id)
234 instances = self.compute_model.get_node_instances(node)
235 node_workload = 0.0
236 for instance in instances:
237 util = None
238 try:
239 util = self.datasource_backend.statistic_aggregation(
240 instance, 'instance', self._meter, self._period,
241 'mean', self._granularity)
242 except Exception as exc:
243 LOG.exception(exc)
244 LOG.error("Can not get %s from %s", self._meter,
245 self.datasource_backend.NAME)
246 continue
247 if util is None: 247 ↛ 248line 247 didn't jump to line 248 because the condition on line 247 was never true
248 LOG.debug("Instance (%s): %s is None",
249 instance.uuid, self._meter)
250 continue
251 if self._meter == 'instance_cpu_usage':
252 workload_cache[instance.uuid] = (util *
253 instance.vcpus / 100)
254 else:
255 workload_cache[instance.uuid] = util
256 node_workload += workload_cache[instance.uuid]
257 LOG.debug("VM (%s): %s %f", instance.uuid, self._meter,
258 util)
260 cluster_workload += node_workload
261 if self._meter == 'instance_cpu_usage':
262 node_util = node_workload / node.vcpus * 100
263 host_metric = 'host_cpu_usage_percent'
264 else:
265 node_util = node_workload / node.memory * 100
266 host_metric = 'host_ram_usage_percent'
268 instance_data = {
269 'compute_node': node, self._meter: node_util,
270 'workload': node_workload}
271 if node_util >= self.threshold:
272 # mark the node to release resources
273 overload_hosts.append(instance_data)
274 else:
275 nonoverload_hosts.append(instance_data)
276 LOG.debug(f"Host usage for {node_id}: {host_metric} is "
277 f"{node_util}. Higher than threshold {self.threshold}: "
278 f"{node_util >= self.threshold}")
280 avg_workload = 0
281 if cluster_size != 0: 281 ↛ 284line 281 didn't jump to line 284 because the condition on line 281 was always true
282 avg_workload = cluster_workload / cluster_size
284 return overload_hosts, nonoverload_hosts, avg_workload, workload_cache
286 def pre_execute(self):
287 self._pre_execute()
288 self.threshold = self.input_parameters.threshold
289 self._period = self.input_parameters.period
290 self._meter = self.input_parameters.metrics
291 self._granularity = self.input_parameters.granularity
293 def do_execute(self, audit=None):
294 """Strategy execution phase
296 This phase is where you should put the main logic of your strategy.
297 """
298 source_nodes, target_nodes, avg_workload, workload_cache = (
299 self.group_hosts_by_cpu_or_ram_util())
301 if not source_nodes:
302 LOG.debug("No hosts require optimization")
303 return self.solution
305 if not target_nodes: 305 ↛ 306line 305 didn't jump to line 306 because the condition on line 305 was never true
306 LOG.warning("No hosts current have CPU utilization under %s "
307 "percent, therefore there are no possible target "
308 "hosts for any migration",
309 self.threshold)
310 return self.solution
312 # choose the server with largest cpu usage
313 source_nodes = sorted(source_nodes,
314 reverse=True,
315 key=lambda x: (x[self._meter]))
317 instance_to_migrate = self.choose_instance_to_migrate(
318 source_nodes, avg_workload, workload_cache)
319 if not instance_to_migrate: 319 ↛ 320line 319 didn't jump to line 320 because the condition on line 319 was never true
320 return self.solution
321 source_node, instance_src = instance_to_migrate
322 # find the hosts that have enough resource for the VM to be migrated
323 destination_hosts = self.filter_destination_hosts(
324 target_nodes, instance_src, avg_workload, workload_cache)
325 # sort the filtered result by workload
326 # pick up the lowest one as dest server
327 if not destination_hosts: 327 ↛ 329line 327 didn't jump to line 329 because the condition on line 327 was never true
328 # for instance.
329 LOG.warning("No proper target host could be found, it might "
330 "be because of there's no enough CPU/Memory/DISK")
331 return self.solution
332 destination_hosts = sorted(destination_hosts,
333 key=lambda x: (x[self._meter]))
334 # always use the host with lowerest CPU utilization
335 mig_destination_node = destination_hosts[0]['compute_node']
336 # generate solution to migrate the instance to the dest server,
337 if self.compute_model.migrate_instance( 337 ↛ exitline 337 didn't return from function 'do_execute' because the condition on line 337 was always true
338 instance_src, source_node, mig_destination_node):
339 self.add_action_migrate(
340 instance_src,
341 'live',
342 source_node,
343 mig_destination_node)
344 self.instance_migrations_count += 1
346 def post_execute(self):
347 """Post-execution phase
349 This can be used to compute the global efficacy
350 """
351 self.solution.model = self.compute_model
352 self.solution.set_efficacy_indicators(
353 instance_migrations_count=self.instance_migrations_count,
354 instances_count=len(self.compute_model.get_all_instances())
355 )
357 LOG.debug(self.compute_model.to_string())